Tuesday, 15 November 2016

Download Facebook pictures with python

This is the python script that will download facebook pictures which are public .

URL used for testing :  https://www.facebook.com/Mr.Anuj2223/photos


Facbook API





I am going to download those photos shown above .


from bs4 import BeautifulSoup
import requests
import os
r=requests.get("https://www.facebook.com/Mr.Anuj2223/photos")
file=BeautifulSoup(r.content)
os.system('clear')
print "Geting the links wait .................."
a=[]
for i in range(len(file.find_all("div",{"class":"_46-h"}))):
     for j in file.find_all("div",{"class":"_46-h"})[i]:
             a.append(j.get('src'))
print 'Downloading the photos .............'

c=len(a)
for i in a:
     b=requests.get(i)
     d=open(str(c),"wb")
     for chunk in b.iter_content(10000000):
             d.write(chunk)
     d.close()
     c=c-1
print 'Saving the photos ...............'

for i in range(1,len(a)+1):
     os.system('mv %d %d.jpg'%(i,i))

print 'Done .............'


So now i will see the output :

 Before running the script :







After running the script :




Looks like script is working fine . Next will show how to use facebook API to play with and downloading the files and pictures .

Connect With Me: Facebook








No comments:

Post a Comment

Popular Posts